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Introduction

1. Symposium on Data Modelling

2. Outline:

a. Definition and uses of MCMC

b. MCMC algorithms

i) Metropolis - Hastings (MH) algorithm

ii) Gibbs Sampler

iii)Their variants



How does this fit?
Three problems ‘solved’ by data modeling

1. Regression

2. Classification

3. Density Estimation

These are methods that estimate densities. These 
densities can then be utilized for both regression and 
classification

We will be using 
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Definition

Markov Chain Monte Carlo (MCMC) techniques are 
methods for sampling from probability distributions 
using Markov chains

MCMC methods are used in data modelling for 
bayesian inference and numerical integration



Monte Carlo Methods

Monte Carlo techniques are sampling methods 

Direct simulation: Let     be a random variable with 
distribution       ; then the expectation         is given by:

which can  be approximated by drawing    samples    
from        and then evaluating

p(x)
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Monte Carlo Integration
Example 1. Mean of a lognormal distribution by direct 
simulation



Monte Carlo Integration



Markov Chains

Consider the sequence of random 
variables                      , sampled from the 
distribution               , then each next sample      
depends only on the current state     and does not 
depend on the further history                         . Such a 
sequence is call a Markov chain.

Thus MCMC techniques aim to construct cleverly 
sampled chains which (after a burn in period) draw 
samples which are progressively more likely 
realizations of the distribution of interest; the target 
distribution.

p(xt+1|xt)
{x0,x1,x2, . . .}

xt+1

xt

{x0,x1, . . . ,xt−1}



Bayesian Inference
Where can these methods  be applied?

Consider the model

where  

This model can be ‘rewritten’ as

For the input set                               and the 
corresponding observations set                               , 
Bayesian inference aims to estimate the posterior 
distribution of the parameter    via Bayes Theorem.

e∼ N(0,σ2)

X = {x1,x2, . . . ,xn}
Y = {y1,y2, . . . ,yn}

y = θx+ e

θ

y|θ,σ2,x∼ N(θx,σ2)



Bayesian Inference
Bayes’ Theoram:

where              is the posterior distribution of the 
parameter of interest

                          is the likelihood function

                      is the chosen prior distribution of 

Inference is usually performed ignoring the 
normalizing constant         , thus utilizing

p(θ|Y ) =
p(Y |θ)p(θ)

p(Y )

p(θ|Y )

p(Y |θ)

p(θ)

θ

θ

p(θ|Y ) ∝ p(Y |θ)p(θ)

p(Y )



MH Algorithm
• Some history:

• The Metropolis algorithm was first proposed in 
Metropolis et al. (1953)

• It was then generalized by Hastings in Hastings 
(1970)

• Made into mainstream statistics and engineering via 
the articles Gelfand and Smith (1990) and Gelfand 
et al. (1990) which presented the Gibbs sampler as 
used in Geman and Geman (1984)

• All other MCMC methods can be considered as 
special cases of the MH algorithm



Metropolis Algorithm
The Metropolis algorithm is a random walk that 
uses an acceptance/rejection rule to converge to 
the target distribution. Its algorithm is:

1. Draw a starting sample     from a starting 
distribution 

2. For i = 1, 2, ...

a. Sample a proposal      from a proposal 
distribution

b. Calculate the ratio

c. Set

θ∗

p0(θ)
θ0

q(θ∗|θi−1)

r =
p(θ∗|y)

p(θi−1|y)

θi =
{

θ∗

θi−1
with probability
otherwise

min(r,1)



Metropolis Algorithm
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Metropolis Algorithm
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Metropolis Algorithm

θ0θ1
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Proposal



Metropolis Algorithm

θ0θ1
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Proposal
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Metropolis Algorithm

θ0θ1
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Proposal

θ2 θ3



Metropolis Algorithm
Example 2. Consider the ordinary linear regression 
model

where: 

                   is the outcome variable

                                           is a vector for explanatory 
variables

                                            is the parameter vector

                    is the independent observation error 
standard deviation 

y

x = (x1,x2, . . . ,xk)

θ = (θ1,θ2, . . . ,θk)

σ

y|θ,σ2,x∼ N(θx,σ2I)



Metropolis Algorithm
For a sample of    idd observations                  , and a 
uniform noninformative prior for    , the conditional 
posterior distribution for      is given by

where:

                     is an            matrix of explanatory variables

(y1, . . . ,yn)
θ

θ

θ|σ2,y∼ N(θ̂,V σ2)

θ̂ = (XT X)−1XT y

V = (XT X)−1

X n× k

n



Metropolis Algorithm



Metropolis Algorithm



Metropolis Algorithm



Metropolis Algorithm



Metropolis Algorithm
Notes:

• Proposal distribution must be symmetric

• Algorithm requires the ability the calculate the 
ratio   , for all

• A proposed sample that increases the posterior 
probability is always accepted

• Some samples that decrease the posterior 
probability are also accepted with probability r

• Proven in the limit as             under certain 
conditions

r (θ,θ∗)

i→ ∞



MH Algorithm
Hastings generalized the basic Metropolis algorithm in 
2 ways: 

1. The proposal density need no longer be 
symmetric

2. consequently the ratio  ,  changes to

Having asymmetric proposal distributions may be 
useful to increase speed of convergance

r

r =
p(θ∗|y)/q(θ∗|θi−1)

p(θi−1|y)/q(θi−1|θ∗)



MH Algorithm
Consideration on the choice of proposal distribution:

• Easy to sample

• Jumps go a reasonable distance in the parameter 
space

• Jumps are not rejected too frequently

• 2 basic ideas are most widely used:

1. normal jumps centred around the previous chain 
position

2. proposal distributions very close to target 
distribution; resulting in high acceptance ratios



Single Component MH
The proposal acceptance/rejection ratio of MH and 
Metropolis falls as the dimension of the posterior 
distribution increases (especially for highly dependent 
parameters) resulting in slow moving chains and long 
simulations

Simulation times can be improved by using the single 
component MH algorithm. Instead of updating the 
whole of    together,   is divided in components (or 
blocks) of different dimensions with each component 
updated separately.

A special case of this algorithm is the Gibbs sampler

θ θ



Gibbs Sampler
For the Gibbs sampler the parameter vector    is divided 
into     components, thus

Each iteration of the sampler cycles through the     
components of     drawing each subset condition on the 
value of the others

At each iteration the order of sampling each subset is 
randomly changed

At each iteration,     is sampled from                           
where

Thus      is sampled based on the latest values of each 
component of 

θ
d θ = (θ1, . . . ,θd)

d
θ

θi
j θi

j ∼ p(θ j|θi−1
− j ,y)

θi−1
− j = (θi

1, . . . ,θi
j−1,θi−1

j+1, . . . ,θ
i−1
d )

θ j

θ



Gibbs Sampler
Example 3. Consider the model with an observable 
vector     of     components

where

   is a vector of means

   is the variance matrix

Assuming a normal prior distribution for    , given by 

y d

µ

Σ

y|θ,Σ∼ N(θ,Σ)

θ

θ∼ N(θ0,Σ0)



Gibbs Sampler
The marginal conditional distribution required for the 
Gibbs sampler is given by

where

θ(1)|θ(2),y∼ N
(
θ(1)

n +β1|2(θ(2)−θ(2)
n ),Σ1|2)

)

Σ−1
n = Σ−1

0 +nΣ−1

Σ1|2 = Σ(11)
n −Σ(12)

n (Σ(22)
n )−1Σ(21)

n

β1|2 = Σ(12)
n (Σ(22)

n )−1

θn = (Σ−1
0 +nΣ−1)−1(Σ−1

0 θ0 +nΣ−1ȳ)



Gibbs Sampler

No correlation between parameters



Gibbs Sampler

No correlation between parameters



Gibbs Sampler

Correlated parameters



Gibbs Sampler

Correlated parameters



Gibbs Sampler
• Algorithm requires the ability to directly sample 

from                    , which is very often the case for 
many widely used models. This makes the Gibbs 
sampler a widely used technique.

• Gibbs sampler is the simplest of MCMC algorithms 
and should be used if sampling from the conditional 
posterior is possible

• Improving the Gibbs sampler when slow mixing:

1. reparameterize - by linear transformations

2. parameter expansion and auxiliary variables

3. better blocking

p(θ j|θi−1
− j ,y)



Inference
• Initial samples are severely effected by initial 

conditions and are thus not representative of the 
target distribution

• Only samples obtains once the chain has converged 
are used to summarize the posterior distribution 
and compute quantiles

• How to assess convergence? 

• Run multiple simulations with starting points 
spread throughout the parameter space

• Compare the distribution from each simulation to 
the mixed results



Recommendation
The Gibbs sampler and MH algorithms work well for a 
wide range of problems if

1. approximate independence withing the target 
distribution can be obtained for the Gibbs sampler

2. and the proposal distribution can be tuned to an 
acceptance of 20 to 45% for the MH algorithm

Try use simplest algorithm first and if convergence is 
slow try improving by reparameterization, choosing 
different component blocks and tuning.

If convergence problems remain more advanced 
algorithms should be used



MH Algorithm Variations
Adaptive MH algorithm:

1. Start with fixed algorithm with normal proposal 
density                         , where     is the variance of the 
target density and                      with    being the 
posterior dimension

2. After some simulations update the proposal rule to 
be proportional to the estimated posterior 
covariance

3. Increase or decrease the scale of the proposal 
distribution to approach the optimal value of 0.44 
(for one dimension) or 0.23 (for multidimensional 
jumps)

N(θ∗|θt−1,c2Σ) Σ
c = 2.4/

√
d d



Hamiltonian Monte Carlo
Gibbs and MH methods are hampered by their random 
walk behaviours especially for high dimensions

Adding auxiliary variables can help the chain move more 
rapidly though the target distribution

Hamiltonian methods add a momentum term       to 
each component       of the target space. Both are 
updated together using MH methods

      gives the expected distance and direction of jump of 
based on the last few jumps. It favour successive jump 
in the same direction, allowing the simulation to move 
rapidly through the space of 

φ j

θ j

φ j θ j

θ j



Langevin Rule
The symmetric jumping rules of the Metropolis 
algorithm cause low acceptance ratios by jumping in 
low probability areas

The Langevin algorithm changes the jumping rule of the 
MH algorithm to favour jumps in the direction of the 
maximum gradient of the target density, thus moving 
the chains towards the high density regions of the 
distribution

The proposal density depends on the location of the 
current sample and this is not symmetric. The MH 
algorithm is thus required



Slice Sampler
Slice samplers adapt to distribution being sampled by 
sampling uniformly for the region under the density 
function plot.

A Markov chain is constructed for a univariate 
distribution by:

1. Sample a random initial value 

2. At each iteration 

a. Sample uniformly (in the vertical slice) for the 
auxiliary variable     uniformly in the region

b. Sample uniformly (in the horizontal slice) for 

θ0

i

µi [0, p(θi−1|y)]

θi



Slice Sampler

Target

θ0

Vertical
Sample

Horizontal
Slice

Vertical
Slice



Slice Sampler

Target

θ0 θ1

Horizontal
Sample



Slice Sampler

Target

θ0 θ1 θ2

Vertical
Sample



Slice Sampler

Target
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Slice Sampler
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θ0
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θ1



Slice Sampler
Notes:

• The slice sampler can be used for multivariate 
distributions by sampling one-dimensional 
conditional distributions in a Gibbs structure

• As opposed to the Gibbs sampler it does not require 
to sampled for the marginal conditional distribution 
but needs to be able to evaluate them

• The slice sampler can deal with distributions 
exhibiting multiple modes if the modes are not 
separated by large regions of low probability



Simulated Tempering
Sampling from multimodal distributions is problematic 
since chains get stuck for long in the closest mode of 
the distribution.

Simulated tempering offers a solution in this case. It 
works with           chains each with a different target 
distribution.

For the multimodal target distribution            a common 
choice for the           distribution is                 where the 
‘temperature’ parameter             and                        .          
results in the original density and large      values 
produces less peaked modes (thus allowing the chain to 
move among all modes)

K +1

p(θ|y)
K +1 p(θ|y)1/Tk

Tk > 0 k = 0,1, . . . ,K k = 0
Tk



Simulated Tempering
Algorithm is as follows:

1. Draw a starting sample     from a starting 
distribution 

2. For each iteration 

a.        is sampled using the Markov chain with target 
distribution

b. A jump from the current sampler     to sampler    is 
proposed with probability      . This move is then 
accepted with probability               where

θt+1

p(θ|y)1/Tk

k j
Js, j

min(1,r)

r =
c j p(θt+1|y)1/TjJj,k

ck p(θt+1|y)1/TkJk, j

θ0

p0(θ)

t



Notes:

• The constant      is set such that the algorithm 
spends equal time in each sampler

• Only samples from            are then used for inference

• The maximum temperature must be set such that 
the algorithm has a significant number of less peaky 
distributions but not too high resulting in poor 
acceptance ratios

• Other auxiliary variable methods exist for dealing 
with multimodel distributions

Simulated Tempering

ck

p(θ|y)



Reversible Jump Sampling
• Reversible jump sampling addresses the problem of 

sampling from a parameter space whose dimension can 
change from one iteration to the next

• Such scenarios are common when a Markov chain is 
used to choose between a number of plausible models

• In such cases the sampled parameter space consists of 
both the traditional model parameters and an indication 
of the current model         

• Let       donate the candidate model with                     and 
let      donate the model parameters of model     with 
dimension 

(θ,u)

Mk k = 1, . . . ,K
θk k

dk



Reversible Jump Sampling
θ(1)

θ(2)

θ(3)

k = 3



Reversible Jump Sampling
The algorithm is as follows:

1. Sampled an initial state 

2. For each iteration

a. propose a new model        with probability       

b. generate an auxiliary variable    from the proposal 
density 

c. determine the proposal density model parameters

d. accept the new model with probability 

(k0,θ0)

Mk∗ Jk.k∗

u
J(u|k,k∗,θk)

min(r,1)

(θk∗,u∗) = gk,k∗(θk,u)



Reversible Jump Sampling
Notes:

•                                 is a one-to-one deterministic 
mapping function between all model

• The resulting posterior draws provide inference 
about both the model and its parameters

(θk∗,u∗) = gk,k∗(θk,u)



Conclusions
• There is no magic in these algorithms. Great care must 

be taken to assess convergence

• Always run multiple iterations of the sampler with 
varying initial samples and ensure convergence of each 
chain to the same distribution

• Tuning is always required

• Implement the simpler algorithms first and then (if 
convergence issues arise) adopt more elaborate 
methods

• These are offline methods
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Are you a data modeller? Do you use data to generate a mathemati-

cal description of a system? Do you use data driven models to 

investigate the learning process? Do you create models to mimic a 

system for tasks such as classification, filtering or prediction? If 

any of this describes your work then this symposium is for you! 

The 2007 symposium on data modelling is a one day event aimed at 

postgraduate and postdoctoral researchers. It aims to bring 

together new researchers in data modelling from various depart-

ments in the University of She!eld. Any new researcher on models, 

methods and applications of data driven modelling is welcomed. 

We are looking for one page abstracts of recent work or work in 

progress for peer review for both oral and poster presentations." 

The deadline for submission is 1 February 2007." Registration will be 

FREE for presenters and will be open in the new year. 

datamodelling.group.shef.ac.uk/symposium
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